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In order to establish a generalized form of an earlier derived algebraic relation between a structure 
factor, triple products and a single Patterson vector U, the joint probability distribution P(Xo, XI, M) 
of Ek, Eh+k and cos 2rc(h/2+k). U with h fixed, is derived for space group PT. From this distribution 
the desired generalized equations are obtained. The sign probability formula for triple products is 
adapted to the case that cos 2rffh/2 + k). U is known. A numerical check on the expression for the 
conditional average (cos2rffh/2+k). U]lEkl>t,[Eh+kl>t)k, showed that for an artificial structure 
the set of signs of the structure factors obtained from this expression was better than that calculated 
from heavy-atom positions related by U. 

Introduction 

For structures with centrosymmetric space groups 
Krabbendam & Kroon (1971) derived a relation be- 
tween a structure factor, triple products and a resolved 
single Patterson vector, 

FhFkFh+ k COS 2~k. U 
Fh : k , (1 )  

U 
cos 2zch .-~- X f~(k)fl(h + k) 

k 

in which k ranges uniformly throughout the reciprocal 
net and fl(k) and f l (h+k)  are the form factors (in- 
cluding temperature factors) of the two atoms related 
by the single Patterson vector U=2r l .  With the sign 
probabilities for triple products (Cochran & Woolfson, 
1955) 

~3 
P + - P _  =tanh e--~2 If~UkU~+kl, (2) 

(1) was modified to 

~,lFhFkFh+kl(P+--P-) COS 2~k.  U 
Fu= k (3) 

U 
cos 2~h. -~- Y f~(k)f~(h + k) 

k 

With the aid of an R value based on (3) and on the 
symmetry relations between structure factors, we were 
able to locate single vectors by scanning through 
Patterson space. Then the structure factors were cal- 
culated with (3) (Krabbendam & Kroon, 1971). How- 
ever, the scanning procedure takes a lot of computing 
time. For this reason in two structures heavy-atom 
single vectors were searched for by calculating R for 
those Patterson peaks that are larger than a preset 
value (Kroon & Krabbendam, 1974; Heinerman, 
Kroon & Krabbendam, 1976). 

Some difficulty arose owing to the fact that the cal- 
culated value of Fh became very inaccurate when 

cos 2~zh. U/2, in the denominator, approached zero. 
The use has been proposed (Kroon & Krabbendam, 
1974) in these cases of an equivalent formula, with 
cosines replaced by sines. An easier way out, followed 
here, is to dispose of the denominator by replacing in 
(1) k by - h - k  and adding this equation to the original 
one. The result is, now in terms of normalized struc- 
ture factors, 

Eh= (Z~]-1 (EhEkEh+k COS 2ZC (-~ + k ) .  U)k (4) 
\ 0"2 / 

and by introduction of P+-P_ 

\ O'21 
(IEhEkEh + kl( P + -- P-) 

(5) 

where Zj is the number of electrons of atom j and 
N 

j = l  
A major problem in the application of (3) appeared 

to be the fact that the equations needed a large 
number of terms. In this paper we develop a generaliza- 
tion of (4) and (5) on a statistical basis, in analogy to 
Hauptman's (1970) generalization of the Sayre-Hughes 
equation (Sayre, 1952; Hughes, 1953), which enables 
us to reduce the number of terms in the equations. 
First we derive the joint probability distribution 
P(Xo, X1,M) ofEk, Eh+k and cos 2zc(h/2+k). U. From 
this the sign probability of triple products is found for 
the case that not only h, IEk[ and IEh+kl, but also 
cos 2zc(h/2+k). U, is given. In fact, in (5) P + - P _  
stands for this sign probability. Next the generalized 
expression of (4) is derived. From the conditional 
probability distribution P(M [IEkl, ]Eh+kl) its first and 
second moments are obtained, which will lead to the 
generalized form of (5). It is argued that in practical 
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applications the first moment, extended to the area 
IEkl>t  and IEh+kl>t, is to be preferred to the 
generalized form of (5). The applicability to sign 
determination of this first moment is checked by a 
numerical example. 

r j  

U = 2rl 
N 
Zj 

N 

O 'n=  E 
j = l  

h,k 

Notation 

position vector of the j t h  atom 
single vector 
number of atoms in the unit cell 
number of electrons associated with atom j 

z~ 

reciprocal-lattice vectors 
ME 2Z s 

E h = ~  ~ COS 2~zb. r s normalized structure factor 
d ~  

Sh sign of Eh 
N[2 , ) 7  2 

~tzs _ ~? " ' - " J  ~h- -~ ,  ~i/2- COS 2zch. r: normalized structure factor 
j = l  4 

of the squared structure 
NI2 " ) 7 4  

E f _  x: "- ' J  h--/_, ~ COS 2~rh. r: normalized structure factor 
j = l  ~'8 

of the structure to the fourth power 
P+,P_ sign probabilities of EhEkEh+k 
P~+,PL as P+,P_ where h, lEd, IE~+d and 

cos 2~rb(b/2 + k) .  U are given 
P (X, . . . )  joint probability distribution of X , . . .  
P(X, . . .  I Y , . . . )  is P(X, . . . )  where Y, . . .  are given 
q:(x . . . .  ) characteristic function of the joint prob- 

ability distribution pj(~ . . . .  ) 
(X(k))k mean value of X(k), k ranges throughout the 

whole reciprocal net 
(X(k)[ Y , . . . ) k  is (X(k))k where IT,...  are given 
(X(k))k, is (X(k))k where the conditions still have to 

be specified. 

The joint probability distribution P(Xo, X1, M) 

For structures with space group PT the method of 
Hauptman (1971) will be used to derive the joint 
probability distribution P(Xo, X~,M) of Ek, Eh+k and 
cos 2zc(h/2 + k ) .  U, where h is fixed, k is variable and 
U is a single Patterson vector. 

For PT the expression for the normalized structure 
factor is 

N]2 2Zj 
Eh= ~ a~/ i  cos 2z&. r j ,  (6) 

j = l  

in which N is the number of atoms in the unit cell. 
Suppose there is a resolved Patterson peak at U =  2r~. 
By P~(~O,~,~M) we denote the joint probability dis- 
tribution of (2Zx/a~z/2) cos 2r&. rl, 
(2Zt/a~/2) cos 2zr(h+k).  r~ and cos 2rc(h/2+k). 2r~, 
and by pj(~o,~), j=  2 , . . . ,  N/2, the joint probability 
distribution of (2Z/a~/2) cos 2z&. r: and 

(2Zj/cr~/2) cos 2zr(h + k) .  rj. The characteristic func- 
tions q~(xo, Xl, XM) and qfiXo, XO, j= 2 , . . . ,  N/2, corre- 
sponding to P~(~0, ~ ,  (M) and the P j((0, ~1) respectively, 
are given by 

ql(Xo, Xl,XM) 

= I~_~ I~_~ I~_ exp [i(Xo~o +.Xh~I + XM(M)] 

× pa(~o,~x,~M)d~od~d~M (7) 
and 

l S qfixo, xO = exp [i(Xo~o + x~)lp:(~o, ~)d~od~l, 
Cx3 - - ~  

N 
j = 2 , . . . ,  2 " (8) 

Assuming p~ . . . .  ,PN/z to be independent, P(Xo, Xa, M) 
can be obtained from the product of the q's (see e.g. 
Cram6r, 1971)" 

P(Xo, Xx, M) 

1 ?_ 
- (Dr) a -oo ~ ~ exp [-i(Xoxo+Xlxl +MXM)] 

NI2 
× ql(Xo, Xa, XM) rl qj(Xo, xl)dxodxldXM • (9) 

j=2 

Formulae (7) and (8) can be written as 

ql(Xo, X, XM)= exp i ~ x 0 a i  n cos 2~k.  rl 

2Z1 
+ x~ ) ~  cos 2~(b + k) .  rl 

+XM COS 2re ( ~  + k ) .  2rQ ] ) k  (10) 

and 

[ [ 2Zj 
qj(xo, xl) = exp i ~x0 ~2a/2 cos 2~zk. rj 

+ xx ~2/2- cos 2~z(h + k ) .  rj k 

N 
j = 2 , . . . ,  2 .  (11) 

The sum of the two cosines in (11) is replaced by one 
cosine, following Hauptman (1970), 

2Zj 2Z s 
Xo ~ n  cos 2~k.  rj + xl ~ cos 2~(h + k ) .  rj 

2Z s = ~3z/~ Aj cos (2~zk. r j + e j ) ,  (12) 

where 

and 

Aj = (x 2 + x 2 + 2XoXl cos 2~zh . rj,W 2, (13) 

cos ej=Aj-l(Xo+Xl cos 2~h. rj) (14) 

sin e j=Aj lx l  sin 2~b. r s . (15) 
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Next, for the exponentional form we use the following 
expansion into Bessel functions* (Watson, 1966, p. 
22), 

exp (iz cos O)=Jo(Z)+ 2 ~ i"J,(z) cos nO. (16) 
n = l  

The expression for q~(xo, xO becomes, after averaging, 

[ 2Zj ) U 
qj(xo,x,)=Jo \-~z/2 Aj_ , j = 2 , . . . , - ~ ,  (17) 

where it is assumed that there are no atoms j with 
j = 2 , . . . , N / 2 ,  which have three rational coordinates. 
The sum of three cosines in (10) could be replaced 
by one cosine. However, in this case A and e are no 
longer independent of k. Therefore, only the first two 
cosines are combined, and then 

exp [i(2Zt/a~/Z)At cos (2z~k. rl + ex)] 
and 

exp [ixM cos 2re(h/2 + k) .  2rt] 

are expanded in Bessel functions. After averaging, 
assuming that the three coordinates of atom 1 are 
not all rational, it is found that 

/ 2Zt ~ qI(Xo, XI,XM)=Jo [--~2/2 At/So(x,)+ 2 , : t  ~ ia" 

[2Zt A,) 2n ~ . r , - t t )  . (18) x Jz, \-~Ti :,(xM) cos (2re h 

Next the expressions for ql(xo, xt, xM) and qi(xo, xt) 
are substituted into (9). The integration with respect 
to xM can be done exactly (Watson, 1966, p. 405): 

1 
P(Xo, X . M ) -  (21r)z P(M) 

x I~_~l~_ exp [-i(Xoxo+X~x,)] 

{ [2Zt ) oo [2Zt AO 
x do \-~2/2 At + 2  ~=t(-1)"J4, \ - ~  

(2. ) × cos (2n arcsin M) cos 4n zc ~ .  r t - e l  

oo [ 2Z1 ) 
+ 2 ~ (-1)"J4,-2 \--~z/z At 

n = t  

x sin [ (2n-  1) arcsin M] 

h × os [(4.-2) 
/' 2zj ) 

x 17 Jo I--~2/2 Aj dxodxt, 
j=2 

(19) 

* For  space group P]" Hauptman  & Karle (1958) made use 
of an expansion into moments,  whereas for space group P1 
Karle & Hauptman  (1958) applied for the first time an ex- 
pansion in Bessel functions, which simplified their calcula- 
tions. Details for P I  have been given by Hauptman  (1970). 

where P(M) is the probability distribution of 
cos 2~(h/2 + k) .  2r~, 

1 
? ( M ) =  -~(i-L.--j./] 2) :t/z . (20) 

It can be shown that the expression between the 
accolades can be written as the sum of four exponen- 
tials. Next, the product 

m2 /' 2Zj ] 
n So kT -a- Aj 

l J = 2  

is expanded (Hauptman, 1970, 1971) and the integra- 
tions are performed. The resulting expression for 
P(Xo,)(1, M) can be written as 

P(Xo, Xt,M)= P(Xo, XOP(M) 

x 1 + M (X 2 + X~ 2 -  2) cos 2~h. -2- + 2XoX~ 

0 " I / 2  [2(x0 + a2 Z2E~M 1) 

+4XoXtcos2z&.  U ]  + . . . } ,  (21) 

where 

and 

P(Xo, Xt) = 

N 
a,= ~, Z'j , (22) 

j = l  

N/2 " ) 7 2  
N, --~j E ~ =  f'~=l ~ cos 2z~h. U,  (23) 

m2 2Z~ 
E £ =  ~ )-~Ta/£ cos 2~zh. r i (24) 

J= t  

1 

0. 4 ~/2 

x exp - 
0"4 E~2 

2 1---22- 

G~/z E~,XoX 0 × 2 
0" 2 

0"4 [ { ( X  4 + 4X~XI + X 4) x 1 -  a-~2 

5 2  (Xo + xb+¼] 

0-81/2 
_ _  .f  1 3 1 3 ~XoX~ tr~ [Eh(zXoXt + - 3X0X0 

+ : 2 2 ¼E2h(XoXt- X 2-  X 2 + 1)] 

s 3 3 3 3 - -  E X X +  X,X + a~ [ h(~ 0 t z 0 t - 7 X o X t ) ] + . . .  

(25) 
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denotes the joint probability distribution of Ek and 
Eh+k.]" In (21) the interdependence of the variables 
Ek and Eh+k on the one hand and the variable 
cos 2zc(h/2+k). U on the other is contained in the 
series between accolades. E~, can be approximated by 

0"3 
E~,,~ ,,.1/2,,.i/z Eh (Cochran & Woolfson, 1955). (26) 

t,, 2 v 4 

For E£ the same method leads to 

ESh~ 0"5 
,..~ 1/2,,-r 1/2 E h .  (27) 
t,, 2 v 8 

In the case that all atoms are identical, (25) reduces to 
the P(Xo, Xx) as derived by Hauptman & Karle (1958). 
These authors have also calculated terms of the order 
1/N 2. They state that their formula is valid in the case 

a2/os. How- of dissimilar atoms when N is replaced by 3 2 
ever, this appears to be compatible only with the main 
term of our (25). 

Sign probabilities for triple products 
The sign probabilities P~. and PL for triple products, 
where h, IEkl, IEh+kl and cos 2rc(h/2+k). U are given, 
can be calculated from P(Xo, Xt, M): 

0.1/2  
_ _ _ _  f 1 3 

× 0.2 S h E h ( ~ l E k E h + k l  

+ ½lEkEd+kl--3lEkEh+kl) 
0"3/2 

_ _ _ _  s 3 3 + 0"~ ShEh(2lEkgh+kl 

} + 2[EkEh+kl--7lEkEh+kl) + . . . .  (29) 

In (28) the first term is P + - P _ .  The higher-order 
terms in (28) express the influence of the known value 
of cos 2rc(h/2+k). U. For equal atoms the first part 
of (29) reduces to the P + - P _  derived by Tsoucaris 
(1970), which is to be preferred to the one given by 
Cochran & Woolfson, if h is fixed and IEhl is large. 

Generalized equations 
In the Sayre-Hughes equation E~=0.2/0 .14/2<EkEh+k>k 

the vector k ranges uniformly over all vectors of the 
reciprocal net. Hauptman (1970) has derived a 
generalized form of this equation for space group P 1, 
in which only a restricted set of E's, in practice the 
larger ones, is involved. We will derive generalized 
forms of our (4) and (5). First we derive the 

Pf+ - PL = Sh 

~ (-1)a+~P ((-1)"lEk[,(--1)qEn+kI,COS 2~Z (h +k). U) 
q = 0  r = 0  

Y. Y~ p ( -  1)~lgkl,(-- 1)qgh+kl,CoS 2~ + k  . U 
q = O  r = O  

--,+ +8 h 
0" 2 

--16Sh---s~_Z~E~,P+P_IEkEh+kl COS2rC + k  .Ucos2rch.-2-  + . . .  , 
17 2 

(28) 

where P÷ and P_ are the sign probabilities for triple 
products, h, IEkl and IEh+kl given, 

P+ - P _  
1 1 

Y, ( -  1)q+rP(( - 1)qlEkl, ( - 1)qEh+kl) 
q = 0  r = 0  

~ ' S h - -  1 1 

Y~ P ( ( -  1)~lgkl, ( - 1)qgh+kl) 
q = O  r = O  

0"41/2 

- -  ShE~,lEkEh+kl az 
= tanh 

o~ E~ I -  a--- ~ 

I ( )2] IE~EkEh+kl 
+ 1 -  tanh a 2  

0"4 E~a2 

1 -  0.--~2 

"~ P(Xo,)(1) was derived separately from P(Xo, XI, M), again 
by means of an expansion in Bessel functions. (25) and (21) 

proved to satisfy o-~-1 e(Xo, X~, M ) d ~ =  P(Xo, Xl). 

generalized Sayre-Hughes equation for space group 
PT; the generalization of (4) is then obvious. 

Let r denote one of the following conditions" 

o r  

or e.g. 

tl < lEvi < t2 ̂  ts < IEh+kl < t4, 

ti < IEkEh+kl < t2, 

tl < IEkEh+kl < t2 V t3 < IEkEh+kl < &. 

Then 

IEhl<EkEh+kh,, = s~<EhEkEh+k>k, 

= Sh<lEhEkEh + kl (P + -- e -  ) >kr 

=Eh<lEkEh+kl(e+--P-))k,,  (30) 

in which P + - P _  is given by (29). From this the 
generalized Sayre-Hughes equation follows at once, 

IE.l 
g h =  (Igkgh+kl(P+--P-)>k. <gkgh+k>k.. (31) 
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Following the same argument the generalized form of 
(4) is found, 

En = ]Ehl 

(IEkEn+kI (P~+ -- PL ) cos 2zc (h  + k) "U)k" 

X < E k E h + k C O S 2 n ( h + k ) . U ) k  , .  (32) 

If no conditions are imposed and if for the calculation 
of < l E k E h + k l ( e % - - e ~ )  cOS 2~(h/2+k) .  U)~, use is 
made of P(Xo, X~, M), (4) is obtained. 

To derive a generalized form of (5) we proceed as 
follows" 

(IEhEkEh+kl(P~+--PL) cos 2rc (-h2- +k) . U)k" 

= <II__l IEhEkEh,kl 

P(MIIEkI, IEh+kl)dM ~ , (33) (/'~ --/'~_)M × 
/ kr  

where 

P( M I IEkI, IEn + kl) 
1 1 

Y Y. e ( ( -  1)¢lEkl,( - 1YIEn+kI,M) 
q = 0  r = 0  

1 1 

~ P ( ( -  1)qlEkl,( - 1)qEn+kl) 
q = 0  r = 0  

= P ( M ) { I +  Z~ M[(E~,+E~+k-2) cos2rch. U 
32 2 

+ 2s,,IE,,Eh+,,I(P+-P_)] 
all 2 

Z~E~,M [2(E~ + E~+,,- I) O-2 

+ cos ,.,,, +...}. 
(34} 

The evaluation of the integral in the right-hand side of 
(33) amounts to the evaluation of the conditional aver- 
ages of cos 2n(h/2 + k).  U and cos 2 2re(h/2 + k).  U, 

I'_, MP(M] IEkl, IEh +kl)dM 

_ Z~ [½(E~+E2h+k_2) COs 2rch U [ tr2 " 2  

+ shlE,,Eh+,,I(P+-P_)] 

,~ Z~E~, E~, + E~+,,- 1 

2SnlEkEh+kl(P+--'-) COS 2nh .--~-] + . . .  , + 

(35) 

I'-, M~P(MIIE"I'IEh+"I)dM=½ " (36) 

The resulting generalized form of (5) is 

Eh = l  <lEhEkEh+kl (P~+--PL )cos 2rc (h  + k) . U)k,., 

(37) 
where 

W= Z~ [½Sn<(lEa En+kl +lEkE3+k I 
tr2 

U 
- 21E,,Eh+kl)(P+--P_)>,,, cos 2~h .-g-  

+ 2 2 _ _  2 s Sh<(IE~E,,+, ,I  <EkEh+k)k -- a~ ZxEh 

+ I E k E ~ + k l - - l E k E h + k l )  ( e + - - r - ) > k ,  

+ 2(E~EZh+k>k, cos 2~h. ~_U] + . . . .  (38) 

Considering the order of the terms in (37), it can be 
seen that for P+ - P _  (in Wand in PC+ -PL),  only the 
first term of (29) is needed. 

The variance of 

IEuEkEh+k[ (PC+ -- PL) cos 2re(h/2 + k).  U, 

given IEkl and IEh +kl, depends upon IEkl and IEh+kl (and 
also upon IEhl, but this is not important since h is 
fixed). On the other hand, for not too large values of 
Z~/a2 the variance of cos 2rc(h/2+k). U, given IEkl 
and IE~+kl, is approximately constant. Therefore, 
instead of (37) we prefer to use in practical applications 

(cos2n ( h + k ) .  U)k  ~ 

_ Z~ [ [½(<E~+E~+k>k,--2) COS 2zch U 
02 . " 2 

+ Sh(IEkEh+kl(P+--P-))k,] 

G--}2 ZZIE~" (E~ + EZh+k>k, - 1 

cos  h. + '  + 

(39) 

which can easily be obtained from (35). Note that if the 
equations obtained from (39) by replacing U by 2rt 
and by multiplying the equation by 2ZJcrl/2, for i= 
1,...,N/2, are added together, an expression for 
<En+2k>k, is found, which in the case of equal atoms 
reads 

<Eh+zk>k, 

1 N1/2 IEhEkEh+k[ 
-- N1/Z Sh IEkEh+kl tanh E~ 

1 N / 

1 
2N Eh<EZu+ E~+k>k'+ . . . .  (40) 
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A numerical test 

Formula (39) can be used to determine the signs of 
structure factors by comparing the agreement between 
the left and the right-hand sides of the equation, once 
for Sh = + and once for Sh = --, and by accepting the 
sign that gives the best result. We applied this to an 
artificial structure in PT with one Mg, two O and eight 
C atoms in the asymmetric unit; the structure was 
constructed from a real one (Spek, 1975) by leaving 
out a few atoms in order to remove Patterson overlap 
on the Mg-Mg single vector (vector U). Normalized 
structure factors were calculated within the Cu K~ 
sphere. The signs of all structure factors were deter- 
mined with the aid of (39). For E [  use was made of (26). 
Only IEkl's and IEh+kl'S larger than 1"35 were included 
in the equations. Although the quantitative agreement 
was poor, most of the signs were determined correctly. 
In Fig. l(a) the result is shown for the case that we 
used only the first-order term (order: Z~/a2) in the 
equation. On the horizontal axis the structure factors 
are arranged in groups of 100 with decreasing IEhl 
values from left to right. For each group the percentage 
of correctly determined signs is given (vertical axis). 
Fig. l(b) gives the result after introduction of the 
second-order term [order 1 /2  2 2 s • (a,l /a2)ZIEld. The per- 
centages of signs correctly determined from the heavy- 
atom positions are depicted in Fig. l(c). Going from 
Fig. l(a) to Fig. l(b) it is seen that the result is im- 
proved by the introduction of the second-order term, 
except for the first 100 E's. The poor result for the very 
large IEl's is due to the fact that the convergence of 
the series decreases with increasing IEhl. By comparing 
Fig. l(b) and Fig. l(c) it is evident that for this ex- 
ample, except for the very large IEl's, our equation 
gives better signs than those calculated from the heavy- 
atom positions. 

Discussion 

In the derivation o'f P(Xo, X~,M) we assumed that 
Pl . . . .  ,Pro2 are independent. This holds if there are no 
integers m j, two of them not zero, such that 

N/2 

rnjrj=r , (41) 
j=l  

where the three components of r are integers. To derive 
the formulae for q~(x0,x~,xu) and q~(xo, xO, j = 2 ,  
. . . ,  N/2, we assumed that no atom has three rational 
coordinates. So the derivation of P(Xo, XI, M) is valid 
if there are no integers mj, not all zero, such that (41) 
holds. The more rnjs there are that are unequal to zero 
and the larger they are, the less the influence of (41). 
If most of the rnSs are zero, and the other rnjs (rn~ 
inclusive) are small (consider as an example Patterson 
overlap on the single vector, e.g. m~=2, mz=l  and 
rn3=- l ) ,  especially the part of P(Xo, X~,M) which 
depends on M will be influenced. 

For the largest structure factors of the artificial 

structure used for the numerical test, (39) is not 
accurate enough to predict the signs. In this case 
higher-order terms are needed. Possibly, better applic- 
able formulae could be obtained with an expression 
for P(Xo, X1,M) where M remains in the exponent. 
For structures where tTl121tT2 is smaller than in the 
present numerical test we expect that more of the signs 
of the largest structure factors will be correct. 
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Fig. 1. Horizontal axis: Normalized structure factors arranged 
in groups of 100 from left to right in order of decreasing 
magnitude; sequence number (N) and median values (E,.) 
are indicated. Vertical axis: The percentage (P) of correctly 
predicted signs. (a) Sign determination with (39); only the 
first-order term is used. (b) As in (a), now with the second- 
order term included. (c) Sign determination from the heavy- 
atom positions. 
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Kinematical Theory of Miissbauer Diffraction by Magnetically Ordered Crystals 
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The kinematical theory of M6ssbauer diffraction by magnetically ordered crystals is developed. The 
case of completely resolved Zeeman splitting of a M6ssbauer line is examined in detail. The expressions 
for coherent scattering amplitudes and scattering cross sections of ),-rays at magnetic and crystalline 
diffraction maxima are derived for the main types of magnetic ordering (ferromagnetic, antiferro- 
magnetic, weak ferromagnetic and helicoidal structures) in the case of the dipole M6ssbauer transition. 
A direct connexion between the polarization of the scattered quanta and the magnetic and crystalline struc- 
ture is revealed in the expressions obtained for polarization vector and the polarization density matrix (in 
the cases of polarized and unpolarized incident beams respectively). The explicit form of the polarization 
density matrix at magnetic reflexions for an antiferromagnet is given. The applications of the present 
results to experimental and theoretical investigations are discussed. 

In a number of theoretical (Afanas'ev & Kagan, 
1965, 1973; Kagan, Afanas'ev & Perstnev, 1968; 
Zhdanov & Kuz'min, 1968; Hannon & Trammel, 
1969; Afanas'ev & Perstnev, 1969; Belyakov & Ajva- 
zian, 1968, 1970; Chukhovskii & Perstnev, 1972) and 
experimental (Voitovetskii, Korsunskii, Novikov & 
Pazhin, 1968; Smirnov, Sklyarevskii, Voscanyan & 
Artem'ev, 1969; Parak, M6ssbauer, Biebl, Formanek 
& Hoppe, 1971; Artem'ev, Sklyarevskii, Smirnov & 
Stepanov, 1972; Artem'ev, Perstnev, Sklyarevskii, 
Smirnov & Stepanov, 1973; Mirzababaev, Smirnov, 
Sklyarevskii, Artem'ev, Izrailenko & Babkov, 1971) 
papers interesting features and possible applications of 
M6ssbauer diffraction were revealed. In particular, 
the experiments on M6ssbauer diffraction by mag- 
netically ordered crystals (Smirnov et al., 1969; 
Artem'ev et al., 1972, 1973) and crystals having com- 
plicated structures of electric field gradient (EFG) 
(Mirzababaev et al., 1971) have shown the practical 
feasibility of magnetic and EFG structure investiga- 
tions of crystals by means of M6ssbauer ),-ray diffrac- 
tion. Application of M6ssbauer diffraction to magnetic 
and crystalline structure investigations looks a prom- 

ising and useful supplement to X-ray, neutron, elec- 
tron diffraction methods because the M6ssbauer 
diffraction method (M6ssbauerography) has some 
additional advantages over conventional methods 
(Zhdanov & Kuz'min, 1968; Parak et al., 1971; 
Ajvazian & Belyakov, 1969a, b; Belyakov & Ajvazian, 
1969; O'Connor & Spicer, 1969; Batterman, Maracci, 
Merlini & Pace, 1973). Other promising fields of 
M6ssbauer diffraction investigation are the study of 
the ),-ray collective interaction with nuclei, the in- 
fluence of the crystal lattice on nuclear processes and 
related topics in nuclear physics (Afanas'ev & Kagan, 
1967). 

The theory of M6ssbauer diffraction was developed 
mostly for crystals without magnetic field and EFG in 
the sites occupied by M6ssbauer nuclei. In connexion 
with the above-mentioned experiments there is a need 
for a theory applicable to the cases of magnetically 
ordered crystals and crystals in which M6ssbauer 
nuclei are situated in the sites with non-zero EFG. In 
the papers published on this topic the simplest cases of 
magnetic ordering and EFG were examined in the 
kinematical approximation (Belyakov & Ajvazian, 
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